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The X - r a y  Scatterinl~ f rom a Hindered Rotator.  III 
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(Received 15 February 1954 and in revised form 19 April 1954) 

The average structure factor for a three-dimensional hindered rotator is derived by using a group- 
theoretical generalization of spherical harmonics. The final relation is general, and is easily 
specialized for the usual potential fields expected in the more symmetrical crystals. 

Introduct ion 

Previous discussions of Laue-Bragg and diffuse scat- 
tering by the hindered rotator (King & Lipscomb, 1950; 
Atoji, Watanabd & Lipscomb, 1953), cover only the 
rotation about a single axis fixed relative to the crystal 
axes. There a re ,  however, many crystals of high 
symmetry  in which various degrees of hindered three- 
dimensional rotation, or of local order wbich can be 
treated approximately equivalently, occur in fairly 
symmetrical potential fields. In the expectation tha t  
the behavior of an actual hindered rotator, with local 
order, may  be reduced to one of essentially indepen- 
dent hindered rotators, we have derived a general 
theory for the average structure factor of a three- 
dimensional rotator in terms of parameters which 
allow a smooth transition from fixed orientation, 
through hindered rotation, to completely free rotation. 
We may  expect tha t  intensities of diffraction can be 
measured precisely enough for discriminating between 
different physical models by their dependence on the 
effective hindering potential, which occurs in the ex- 
pression for the average amplitude of scattering. 

As in the previous discussions, surface spherical 
harmonics are employed in  the mathematical  ex- 
pansion, but now their general behavior under general 
rotation transformations are needed. Although Hult- 
gren (1932) discussed this problem, his results are not 
used here because of lack of separation of variables in 
our equations. The results of Sato (1951) are applicable, 
but  are not used because of the complexity of the 
analysis. Matrix representation for the three-dimen- 
sional rotation transformation of the surface spherical 
harmonics is well known (Wigner, 1931, p. 164), but 
it is the more extensive study of T~k~h~shi (1952) 
by means of group-theoretical considerations which 
leads beautifully to the results given below. 

The m o l e c u l a r  s tructure  factor 

The molecule is considered rigid; it contains axes 
x', y', z' which make Eulerian angles 0, ~, ~ with the 
crystal axes x, y, z, here taken orthogonal. The polar 
coordinates of the molecular axes are 0 and ~; and ~0 
is the angular parameter of molecular rotation around 
the z' axis. We shall consider a single molecule at the 

origin, and expand its probabili ty distribution in 
terms of generalized surface spherical harmonics, 
where the constants, ejn, in the expansion are to be 
determined eventually by comparing observed and 
calculated X-ray data. These same constants, ej~, 
could also be derived from a molecular model and 
assumed force fields, and then be compared with the 
values obtained experimentally. 

The hindering potential for atom j with the polar 
coordinates, 0# ~j with respect to the crystal axes, 
x, y, z, can be expressed as 

o o  

V(O# ~j) = ~Y, ej,~Yn(O# q)j) 
n----O 

= ~ .e jn~(Am~ cosm~i÷Bm~sinmcpi)P~(cos0i).  (1) 
n = 0  m = 0  

For the coefficients, Amn and Bran, we substitute as 
follows : 

(2) 
Bm,~ = i{(-1) '~Hmn-H m n } v l ( n ÷ m ) ! j  , 

we then have 

r(o# 9,jl = -Y % .~ Hmnr~m(rjl, (3) 
n=O m = - - n  

where Y°m(I'j) is related to the generalized surface 
spherical harmonic, Y~'m(F).* From the representative 
matrix of the generalized surface spherical harmonics, 
we have 

* Ynkm(F) is defined for 0 _< 0 <: g by the relation 
Yknm(F) = ei~'~+im~Pknm (cos 0). (4) 

Pknm (cos O) can be regarded as a generalized associated Le- 
gendre function; Pn °m (cos O) and Pkno (cos O) are the associated 
Legendre functions in Ferrer's definition, multiplied by a 
constant, e.g. 

m) !J P~n (cos O) . (5) 

We also utilized the relations 

(-- 1)m--kP~nnn (cos 0) ---- p~k--m (cos 0) , ] 
(-- 1)k+uP~ -m (cos O) = p ~ n  (cos O) . ] (6) 
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r~.~(r~) = ~ Y~(r~)Y~(r), (7) 
h ~ - - n  

and further, applying (7) to (3), 

= }] oh ' hm v(o~, ~ )  = 27 e~. y .  ( / '~)y .  (F) . (8) 
n=0 h n 

Here T' refers to the parameters for the molecular 
orientation, 0, % % a n d / ' / r e f e r  to the known atomic 
coordinates 0i, ~i, with respect to the cartesian mole- 
cular axes x', y', z'. Note that  the Y,~(OI, ~i)'s have 
unique forms for given potential symmetries. Assum- 
ing the total hindering potential energy of a molecule 
containing ft atoms is less than bT, the probability 
function for molecular orientation is then 

w(o, v, ~)= exp{- ~ vgom)~ ~=~ -~ 

: + z 0 = z  __z_. +.rob<r;) 

1 "~ . . . .  + 

The higher terms can also be expressed as linear 
combinations of the Y~m(F). The average structure 
factor is then 

× oxv r ) r/I w (0, v, v) r, 
/. 

where h is the reciprocal-lattice vector and fj and rj 
are the scattering factor and position vector of atom 
j,  dF  equals sin 0 dO dq~d% and integration is carried 
out from 0 to 7~ for 0 and from 0 to 2~ for both q~ and % 
Define ~j = 2~lhl Irjl, and whj as the angle between 
h and r# Then the Legendre expansion of the ex- 
ponential is 

o O  

exp (2~ih • rj) = 27 iP(2p+ 1)jp(~j)Pv (cos w~i), (1 1) 
p=0 

where jp (a ] )=  ~ / ( ~ ) "  Jp+½ (%.) is the spherical Bessel 

function. Using (7), we find 

p 
P~ (cos ~ )  = 27 Yp(r~)ro/(5) 

q=-p  

P P 
= ~Y [Y~(F~) 27 {Y°~*(F/)Y~(F)}]. (12) 

q = - p  l = - p  

By means of the orthogonality relation of generalized 
surface spherical harmonics 

I 8792 OnpOtdOmq, (13) rY~m(F) Y~(_P)dF - 2n + 1 

the average structure factor can then be expressed as 

F =  ~ f j [ s i n  o~j + ~  27 injn(O¢,) k Hm.Y°m(Fh) 
• L ~j n = 0  m = - n  

Using equations (2) and (6), we transform 2' to a more 
convenient form for computation" 

= 27fj[sina______j+ 1 oo i"jn(aj)M~ 
L o,j ~ o  ,.=o (A=. cos m~% 

] + Bran sin m%)P~(cos Oh) +O + . . .  , (15) 

where 31r~ is 

n 

M~ -- ~oeh (n -h ) !  
= ( n + h ) !  

x ej, P ,  (cos 0/) cos h~v/ P~ (cos 0/) cos h~j 

[__  tt h ] 

with sn=  1 when h = 0  

and s n = 2  when h + 0 .  

Now, M~ may be regarded as the molecular shape 
factor, which depends upon the atomic coordinates 
relative to the appropriate molecular axes. The first 
term in (14) and (15) can be regarded as the explicit 
description of the free rotation of the molecule, while 
the degree of hindrance causes the remaining term as 
expressed by the factor (1/kT) n. 

The integrated intensity of Laue-Bragg scattering, 
J1, from a crystal containing v molecules with mole- 
cular centers at R, is thus 

J1  -~ I~G[F12127exp (2z ih .  R,)[ ~ , (17) 
y 

where G is the Laue function and I~ is the scattering 
intensity from a single electron. 

S y m m e t r y  c o n s i d e r a t i o n s  

1. Center of symoetry and mirror plane 
When the molecule has a center of symmetry, both 

h and n take on even integral values in M~. When the 
hindering potential has a center of symmetry, m and n 
take on even integral values. An xz mirror plane 
makes the sine terms vanish in both (15) and (16). 

2. Diatomic molecule in a potential of symmetry Td 
and Oh 

We choose the line connecting atoms A and B as 
t 

the z' axis, whence the polar coordinates (0A, ~ ) ,  
become (0, 0), and (0~, TB) become (7~, 0), so that  
P~(cos0~)- -  1 and P~(cos0~) = (-1)n w h e n h = 0 ,  
and zero otherwise. We now utilize the group theoreti- 
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cal results (Curdy, 1938) for a tetrahedral field to 
obtain,* 

ff = fa  sin oca + f ~  sin o¢~ 

• , sin c~\ l [(e,~o+e~o) (f~sin ~a + y ~ ~ )  + ~ - ~  

+ [(ea4+ena){f.aj4(oca)+f~j4(~x.n)}{P4 (cos 0~) 

+ 1/168 P~ (cos 0~) cos  4 ~ h } -  (ca6 +eB6 ) {Yaj6 (~a) 

+f~js(~)}{Ps (cos 0h)-1/360 P~ (cos 0h) cos 4qa} 

+ (e~s +e~8){f~js(~A)+f~js(~)}{Ps (cos 0h) 
+ 1/5940 P~(cos 0h) cos 4qoa 

+ 1/3991680Ps s (cos 0h) cos 8~a}+. .  "1 
. J  

i 
kT [( e ~3-eza){f,~j3(~ a)-f~j3(  o¢ ~ )} Pa ~ (cos 0 h) sin 2~h 

+(e~,-e~){/~j,(~)-f~j7(~)}{p~ (cos 0~)sin 2~h {(1;/ +i/1560P,~(cos0h/sin6~0~+...]+o/ ~ + . . . .  
(181 

The symmetry Oh causes the imaginary part  of (18) 
to vanish. Thus for a simple hindering potential, it is 
not troublesome to obtain fdrther terms. 

T H E  X - R A Y  S C A T T E R I N G  F R O M  A H I N D E R E D  R O T A T O R .  I I I  

3. A simple example 
Let us assume hindering potentials, V(Oa, qDa)= 

-Caxyz/r a for atom A, and -CBxyz/r a for atom B 
of a diatomic molecule AB. This is a smoothed tetra- 
hedral potential h_aving maximum and minimum 
values at [111] and [111] plus the tetrahedral permuta- 
tions. The average structure factor can be expressed as 

$7 = fA si__n_n c~_A + fB sin ~_______£B 
o~ A • ~X B 

i 
30kT (Ca-CB)(f~J3(~a)-f~j3(~B)}P~ (cos 0h)sin 2 ~  

1 (C~ + C~) (fa sin ~ a + f~ sin a___B~/ 
210(kT) 2 \ ~A C~ / 

1 
ll0(kT)~ " (C~ +~){fAj~(~XA)+f~j4(~X~)}{P4 (COS 0~) 

+ 1/168P~ (cos 0h) cos 4 ~ }  

1 

231(kT)U (c~+c~)(Aj~(~xA)+fzjd~x~)) (P~ (cos 0~) 

* Express ions  for Pn  m (cos 0) in t e rms  of cos kO or sin kO 
have  been  g iven for n _< 7 ( J ahnke  & Erode,  1945; Sato,  1951). 
F o r  n = 8, we have ,  

Ps  (cos 0) ---- (1/16384) 
× (6435 cos .80 + 3432 cos 60 + 2772 cos 40 + 2520 cos 20 + 1225), 

P s  4 (cos O) = (10395/1024) 
× (65 cos 80 - -104  cos 6 0 - - 3 6  cos 4 0 + 4 0  cos 2 0 + 3 5 ) ,  

P s  s (cos 0) ---- (2027025/128) 
x (cos 80--8 cos 60 + 28 cos 40--56 cos 20 + 35). 

In  most highly disordered crystals, the 1/(kT) 2 terms 
are considerably less important,  and terms of higher 
order are negligible. 

The potential V(O, qD)=-ax2y2z2/r e is a fairly 
sharpened octahedral potential giving maximum prob- 
abilities at the four body diagonal directions. This is 
one of the possible hindering potentials for face- 
centered packing of rotating diatomie molecules. The 
1/(kT) term for this potential corresponds to the 
1/(kT) 2 term in (19) with different constants. Another 
possible packing of rotating molecules yields hexagonal 
symmetry. For C6h symmetry, the linear combination 
of surface spherical harmonics, Pe (cos 0), P~ (cos 0) 
× {cos 6~ or sin 6~}, P~ (cos 0), P~ (oo~ 0) {oo~ 6~ or 
sin 6~v} etc. are employed. For a general discussion of 
any symmetry, see Bethe (1929). 

4. Tetrahedral molecule in a potential of symmetry Oh 
For molecules of the type ABa, having Td symmetry, 

but  disordered to Oh symmetry, the result is 

~=/A+4f~ sin~+4/~ 1 [ s in~ 
0~B ~ eB° (%B 

+28/27 ez4j4 (c~B) {P4 (cos 01,) 

+l /168P~(cos Oh) cos 4~h} 

- 128/81 eBaje(~B) {Pc (cos Oh) 

- 1/360P~ (cos Oh) cos 4~h} + . . . ~  + . . .  (20) 

where the polar coordinates of the B atoms are chosen 
as 0Bi = cos-l{(-1)i-1/~/3} and ~Bi = (2i-1)~/4(i = 
1, 2, 3, 4), so that  

P4 (cos 0B) = -7/18,  
P~ (cos 0B) cos 4 ~  = -140/3,  
Pe (cos 0B) = 2/9, 

and P~6 (cos 0B) cos 4~B = -560 .  

Then, M~ = 28%4/27 and M B = 32ess/81. 

When we know es4 and eBs, etc. from ~l~e Iff] ~ 
values using (20), the hindering potential can be 
estimated, at least approximately, from (1). 

Finally, we shah not discuss the diffuse scattering, 
which has been extensively treated by Matsubara 
(1950) by different methods, except to point out its 
considerable dependence upon the hindering potential.  

I t  is a pleasure to acknowledge discussion of some 
mathematical aspects with Mr T. Takahashi, and to 
thank the Office of Naval Research for financial aid 
of this research. 
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An X-ray Diffraction Method for the Study of Substructure of Crystals 
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A double-crystal diffractometer method using a Geiger counter and supplementary film technique 
has been described. The analysis of the multi-peaked rocking curves obtained from bent, coarse- 
grained aluminum established a correlation between intensity maxima and adjacent lattice regions 
giving rise to them. The tilt between adjacent subgrains was determined and the existence of 
substructural domains within the subgrain was shown. 

1. Introduction 

Various workers studying the subgrain structure of 
single-crystal and polycrystalline aluminum as well as 
other metals have obtained data concerning the sub- 
grain size which vary greatly in order of magnitude 
(Tate & McLean, 1951-2; Perryman, 1954; Hunter & 
Robinson, 1953; Delisle, 1953; Hirsch & Kellar, 
1952). Refined microscopic and X-ray techniques have 
revealed substructural entities which are consider- 
ably smaller than those disclosed by more conventional 
techniques. The possibility therefore arises that  under 
certain conditions of specimen preparation various 
orders of magnitude of substructural entities may 
coexist. The possible coexistence of such different sub- 
structural entities is investigated in coarse-grained 
bent aluminum specimens by means of an X-ray 
diffraction technique. 

2. Exper imenta l  method  

(a) Preparation of specimens 
The aluminum specimens studied were furnished 

through the courtesy of Mr M. Metzger of Columbia 
University. The specimens were of 99.993% purity, 
containing 0.004% Fe and 0.002% Cu. The coarse 
grains were obtained by the strain-anneal method. 
Specimen A1-1 was bent to a radius of curvature of 
20.5 cm. and subsequently heated at 600 ° C. for 18 hr. 
Specimen A1-2 was bent to a radius of curvature 
of 2 cm. and recrystallized upon annealing at 645 ° C. 
for 21 hr. and etched with 7 % HC1 solution containing 
some copper. This solution has been shown to attack 
subgrain boundaries strongly (Metzger & Intrater, 
1954). 

(b) X-ray method" 
As the principal research tool in this investigation 

a modified X-ray double-crystal diffractometer shown 
in Fig. 1 was employed. The X-ray beam emerging from 
a copper-target tube is reflected from the cleaved 
surface of a calcite crystal mounted on an adjustable 
holder (A) next to the beam port. The rocking curve 
of the cleaved calcite crystal exhibited a width at half 
maximum intensity of 8 sec. of arc. In order to remove 
the Kae component from the reflected radiation, the 
beam .passes through a 41 cm. long collimator (B) 
bolted to the sturdy base plate (C). 

The collimator is provided with adjustable slit 
systems (D) at both ends. By proper adjustment of the 
vertical exit slit the Ka  2 component of the emerging 
beam was eliminated. The specimen is mounted on a 
goniometer (E), the axis of rotation being coincident 
with the crystal surface. The goniometer is equipped 
with a micrometer screw (F) which permits vertical 
scanning of the specimen surface. The specimen is 
rotated by a worm gear (G) which is connected to a 
synchronous 2 r.p.m, reversible motor (H) by means 
of interchangeable reduction gears (I) providing for a 
variety of speeds of specimen rotation. Attached to 
the reduction-gear system is a revolution counter (J) 
which enables one to relocate readily the angular 
position of the specimen. The reflection intensities of 
the specimen are detected by a Geiger counter (K) 
mounted on a track (L) which can be rotated in- 
dependently around the specimen axis. Provisions are 
made for tilting the Geiger counter to register non- 
equatorial reflections. Attached to the front of the 
Geiger-counter window is a frame with inserted film 
holder (M). By means of the screw (N) small film 


